Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2010.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Oxygen isotope evidence for slab melting in modern and ancient subduction zones</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Bindeman, I.N." name="eprints.creators_name" />
  14. <meta content="Eiler, J.M." name="eprints.creators_name" />
  15. <meta content="Yogodzinski, G.M." name="eprints.creators_name" />
  16. <meta content="Tatsumi, Y." name="eprints.creators_name" />
  17. <meta content="Stern, C.R." name="eprints.creators_name" />
  18. <meta content="Grove, T.L." name="eprints.creators_name" />
  19. <meta content="Portnyagin, M.V." name="eprints.creators_name" />
  20. <meta content="Hoemle, K." name="eprints.creators_name" />
  21. <meta content="Danyushevsky, L.V." name="eprints.creators_name" />
  22. <meta content="bindeman@uoregon.edu" name="eprints.creators_id" />
  23. <meta content="" name="eprints.creators_id" />
  24. <meta content="" name="eprints.creators_id" />
  25. <meta content="" name="eprints.creators_id" />
  26. <meta content="" name="eprints.creators_id" />
  27. <meta content="" name="eprints.creators_id" />
  28. <meta content="" name="eprints.creators_id" />
  29. <meta content="" name="eprints.creators_id" />
  30. <meta content="L.Dan@utas.edu.au" name="eprints.creators_id" />
  31. <meta content="article" name="eprints.type" />
  32. <meta content="2007-10-04 05:04:46" name="eprints.datestamp" />
  33. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  34. <meta content="show" name="eprints.metadata_visibility" />
  35. <meta content="Oxygen isotope evidence for slab melting in modern
  36. and ancient subduction zones" name="eprints.title" />
  37. <meta content="pub" name="eprints.ispublished" />
  38. <meta content="260100" name="eprints.subjects" />
  39. <meta content="restricted" name="eprints.full_text_status" />
  40. <meta content="andesite; adakite; subduction; oxygen isotopes; setouchi; trondhjemite; zircon" name="eprints.keywords" />
  41. <meta content="The definitive version is available at http://www.sciencedirect.com/" name="eprints.note" />
  42. <meta content="We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant slab melts.
  43. Measured and calculated values of delta 18 O for olivine phenocrysts in these samples vary between 4.88 per mil and 6.78 per mil, corresponding to calculated melt values of 6.36 per mil to 8.17 per mil. Values of delta 18 O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical
  44. adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of delta 18 O slightly higher than those of normal mid-oceanridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Sirich
  45. compositions and low liquidus temperatures, not 18 O-rich sources). Other primitive adakites from Panama and Fiji show
  46. only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have delta 18 O values of ca. 9–20 per mil, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have delta 18 O values of ca. 2–5 per mil. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower- delta 18 O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme delta 18 O values, but undergoisotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in delta 18 O than equilibrium with the mantle, consistent with their containing variable amounts
  47. of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka)." name="eprints.abstract" />
  48. <meta content="2005-07" name="eprints.date" />
  49. <meta content="published" name="eprints.date_type" />
  50. <meta content="Earth and Planetary Science Letters" name="eprints.publication" />
  51. <meta content="235" name="eprints.volume" />
  52. <meta content="3-4" name="eprints.number" />
  53. <meta content="480-496" name="eprints.pagerange" />
  54. <meta content="10.1016/j.epsl.2005.04.014" name="eprints.id_number" />
  55. <meta content="TRUE" name="eprints.refereed" />
  56. <meta content="0012-821X" name="eprints.issn" />
  57. <meta content="http://dx.doi.org/10.1016/j.epsl.2005.04.014" name="eprints.official_url" />
  58. <meta content="[1]J. Gill, Orogenic Andesites and Plate Tectonics, Springer- Verlag, Berlin, 1981, 330 pp.
  59. [2] T. Elliot, Tracers of the slab. Inside the subduction factory, Geophys. Monogr. 138 (2003) 23–44.
  60. [3] H. Martin, Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas, Geology 14 (1986)753– 756.
  61. [4] R.W. Kay, Aleutian magnesian andesites: melts from subducted Pacific ocean crust, J. Volcanol. Geotherm. Res. 4
  62. (1978) 117–132.
  63. [5] C.R. Stern, R. Kilian, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone, Contrib. Mineral. Petrol. 123 (1996) 263–281.
  64. [6] M.J. Defant, M.S. Drummond, Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature
  65. 347 (1990) 662– 665.
  66. [7] G.M. Yogodzinski, O.N. Volynets, A.V. Koloskov, N.I. Seliversov, V.V. Matvenkov, Magnesian andesites and subduction component in a strongly calc-alkaline series at Piip volcano, Far Western Aleutians, J. Petrol. 35 (1994) 163– 204.
  67. [8] T.L. Grove, S.W. Parman, S.A. Bowring, R.C. Price, M.B.
  68. Baker, The role of an H2O-rich component in the generation
  69. of primitive basaltic andesites and andesites from the Mt.
  70. Shasta region, N. California, Contrib. Mineral. Petrol. 142
  71. (2002) 375–396.
  72. [9] E. Bourdon, J.P. Eissen, M.A. Gutscher, M. Monzier, M.L.
  73. Hall, J. Cotton, Magmatic response to early aseismic ridge
  74. subduction: the Ecuadorian margin case South America, Earth
  75. Planet. Sci. Lett. 205 (2003) 123– 138.
  76. [10] G. Shimoda, Y. Tatsumi, S. Nohda, K. Ishizaka, B.M. Jahn,
  77. Setouchi high-Mg andesites revisited: geochemical evidence
  78. for melting of subducted sediments, Earth Planet. Sci. Lett.
  79. 160 (1998) 479–492.
  80. [11] T. Hanyu, Y. Tatsumi, S. Nakai, A contribution of slab-melts to
  81. the formation of high-Mg andesite magmas; Hf isotopic evidence
  82. from SW Japan. Geophys. Res. Lett. 29 (2002) 22, 2051.
  83. [12] Y. Tatsumi, T. Hanyu, Geochemical modeling of dehydration
  84. and partial melting of subducting lithosphere: toward a comprehensive
  85. understanding of high-Mg andesite formation in
  86. the Setouchi volcanic belt, SW Japan, G-cubed 4 (2003) (art.
  87. no. 1081).
  88. [13] K.Y. Tomlinson, D.W. Davis, J.A. Percival, D.J. Hughes, P.C.
  89. Thurston, Mafic to felsic magmatism and crustal recycling in
  90. the Obonga Lake greenstone belt, western Superior Province:
  91. evidence from geochemistry, Nd isotopes and U–Pb geochronology,
  92. Precambrian Res. 114 (2002) 295– 325.
  93. [14] S.M. Kay, V.A. Ramos, M. Marquez, Evidence in Cerro
  94. Pampa volcanic rocks for slab-melting prior to ridge–trench
  95. collision in southern South America, J. Geol. 101 (1993)
  96. 703– 714.
  97. [15] G.M. Yogodzinski, J.M. Lees, T.G. Churikova, F. Dorendorf,
  98. G. Wo¨ rner, O.N. Volynets, Geochemical evidence for the
  99. melting of subducting oceanic lithosphere at plate edges,
  100. Nature 409 (2001) 500– 504.
  101. [16] M. Abratis, G. Wo¨ rner, Ridge collision, slab-window formation,
  102. and the flux of Pacific asthenosphe re into the Caribbean
  103. realm, Geology 29 (2001) 127–130.
  104. [17] E. Bourdon, J.P. Eissen, M. Monzier, C. Robin, H. Martin, J.
  105. Cotten, M.L. Hall, Adakite-like lavas from Antisana volcano
  106. (Ecuador): evidence for slab melt metasomatism beneath the
  107. Andean Northern volcanic zone, J. Petrol. 43 (2002) 199–217.
  108. [18] D. Mattey, D. Lowry, C. Macpherson, Oxygen isotope composition
  109. of mantle peridotite, Earth Planet. Sci. Lett. 128
  110. (1994) 231–241.
  111. [19] M. Eiler, Oxygen isotope variations of basaltic lavas and upper
  112. mantle rocks, in: J.W. Valley, D.R. Cole (Eds.), Stable Isotope
  113. Geochemistry, Reviews in Mineralogy and Geochemistry, vol.
  114. 43, 2001, pp. 319– 364.
  115. [20] Y. Kolodny, S. Epstein, Stable isotope geochemistry of deep
  116. sea cherts, Geochim. Cosmochim. Acta 40 (1976) 1195– 1209.
  117. [21] R.T. Gregory, H.P. Taylor, An oxygen isotope profile in a
  118. section of the Cretaceous oceanic crust, Samail ophiolite,
  119. Oman: evidence for y18O buffering of the oceans by deep
  120. (N5 km) seawater–hydrothermal circulation at mid-ocean
  121. ridges, J. Geophys. Res. 86 (1981) 2737– 2755.
  122. [22] J.C. Alt, K. Muehlenbachs, J. Honnorez, An oxygen isotopic
  123. profile through the upper kilometer of the oceanic crust, DSDP
  124. hole 504B, Earth Planet. Sci. Lett. 80 (1986) 217– 229.
  125. [23] H. Staudigel, G.R. Davies, S.R. Hart, K.M. Marchant, B.M.
  126. Smith, Large-scale isotopic Sr, Nd and O isotopic anatomy of
  127. altered oceanic crust—DSDP/ODP sites 417/418, Earth Planet.
  128. Sci. Lett. 130 (1995) 169– 185.
  129. [24] M. Magaritz, H.P. Taylor, Oxygen and hydrogen isotope studies
  130. of serpentinization in Troodos Ophiolite complex, Cyprus,
  131. Earth Planet. Sci. Lett. 23 (1974) 8 –14.
  132. [25] J.D. Cocker, B.J. Griffin, K. Muehlenbachs, Oxygen and
  133. carbon isotope evidence for sea-water–hydrothermal alteration
  134. of the Macquarie Island ophiolite, Earth Planet. Sci. Lett. 61
  135. (1982) 112–122.
  136. [26] D.P. Schrag, D.J. DePaolo, F.M. Richter, Oxygen isotope
  137. exchange in a 2-layer model of oceanic-crust, Earth Planet.
  138. Sci. Lett. 111 (1992) 305– 317.
  139. [27] J.M. Eiler, A. Crawford, T. Elliott, K.A. Farley, J.W. Valley,
  140. E.M. Stolper, Oxygen isotope geochemistry of oceanic-arc
  141. lavas, J. Petrol. 41 (2000) 229–256.
  142. [28] Z.D. Sharp, A laser-based microanalytical method for the in
  143. situ determination of oxygen isotope ratios of silicates and
  144. oxides, Geochim. Cosmochim. Acta 54 (1990) 1353– 1357.
  145. [29] J.W. Valley, N. Kitchen, M.J. Kohn, C.R. Niendorf, M.J.
  146. Spicuzza, UWG-2, a garnet standard for oxygen isotope
  147. ratio: strategies for high precision and accuracy with laser
  148. heating, Geochim. Cosmochim. Acta. 59 (1995) 5223– 5231.
  149. [30] H. Chiba, T. Chacko, R.N. Clayton, J.R. Goldsmith, Oxygen
  150. isotope fractionations involving diopside, forsterite, magnetite
  151. and calcite; application to geothermometry, Geochim. Cosmochim.
  152. Acta 53 (1989) 2985–2995.
  153. [31] Z.F. Zhao, Y.F. Zheng, Calculation of oxygen isotope fractionation
  154. in magmatic rocks, Chem. Geol. 193 (2003) 59– 80.
  155. [32] I.N. Bindeman, V.V. Ponomareva, J.C. Bailey, J.W. Valley,
  156. Volcanic arc of Kamchatka: a province with high-y18O magma
  157. sources and large scale 18O/16O depletion of the upper crust,
  158. Geochim. Cosmochim. Acta 68 (2004) 841– 865.
  159. [33] K.M. Cooper, J.M. Eiler, P.D. Asimow, C.H. Langmuir, Oxygen
  160. isotope evidence for the origin of enriched mantle beneath
  161. the mid-Atlantic ridge, Earth Planet. Sci. Lett. 220
  162. (2004) 297– 316.
  163. [34] C.G. Macpherson, D.R. Hilton, D.P. Mattey, J.M. Sinton,
  164. Evidence for an O-18-depleted mantle plume from contrasting
  165. O-18/O-16 ratios of back-arc lavas from the Manus Basin and
  166. Mariana Trough, Earth Planet. Sci. Lett. 176 (2000) 171– 183.
  167. [35] O. Sigmarsson, H. Martin, J. Knowles, Melting of a subducting
  168. oceanic crust from U–Th disequilibria in Austral Andean
  169. lavas, Nature 394 (1998) 566– 569.
  170. [36] O. Sigmarsson, J. Chmeleff, J. Morris, L. Lopez-Escobar,
  171. Origin of Ra-226–Th-230 disequilibria in arc lavas from
  172. southern Chile and implications for magma transfer time,
  173. Earth Planet. Sci. Lett. 196 (2002) 189– 196.
  174. [37] K. Hoernle, P. Bogaard, R. Werner, B. Lissinna, F. Hauff, G.
  175. Alvarado, G. Garbe-Schonberg, Missing history (16–71 Ma)
  176. of the Galapagos hotspot: implications for the tectonic and
  177. biological evolution of the Americas, Geology 30 (2002)
  178. 795–798.
  179. [38] O.N. Volynets, A.D. Babanskii, Y.V. Gol’tsman, Variations in
  180. isotopic and trace elemental composition of lavas from volcanoes
  181. of the Northern group, Kamchatka, in relation to specific
  182. features of subduction, Geochem. Int. 38 (2000) 974– 989.
  183. [39] R.P. Rapp, N. Shimizu, M.D. Norman, G.S. Applegate, Reaction
  184. between slab-derived melts and peridotite in the mantle
  185. wedge: experimental constraints at 3.8 GPa, Chem. Geol. 160
  186. (1999) 335– 356.
  187. [40] G.M. Yogodzinski, P.B. Kelemen, Slab melting in the Aleutians:
  188. implications of an ion probe study of clinopyroxene in
  189. primitive adakite and basalt, Earth Planet. Sci. Lett. 158 (1998)
  190. 53– 63.
  191. [41] L.E. Borg, M.A. Clynne, T.D. Bullen, The variable role of
  192. slab-derived fluids in the generation of a suite of primitive
  193. calc-alkaline lavas from the southernmost Cascades, California,
  194. Can. Mineral. 35 (1997) 425– 452.
  195. [42] C.R. Bacon, P.E. Bruggman, R.L. Christiansen, M.A. Clynne,
  196. J.M. Donnelly-Nolan, W. Hildreth, Primitive magmas at five
  197. Cascade volcanic fields: melts from hot, heterogeneous subarc
  198. mantle, Can. Mineral. 35 (1997) 397– 423.
  199. [43] W.P. Leeman, D.R. Smith, W. Hildreth, Z. Palacz, N. Roger,
  200. Compositional diversity of late Cenozoic basalts in a transect
  201. across the Southern Washington Cascades—implications for
  202. subduction zone magmatism, J. Geophys. Res.-Solid 95
  203. (1990) 19561– 19582.
  204. [44] J. Chmeleff, O. Sigmarsson, The role of fluids in an
  205. adakitic volcano: constraints from U-series in lavas of
  206. Pichincha, Ecuador. Abstracts of 2004 Goldschmidt conference,
  207. A601.
  208. [45] J.M. Eiler, M.J. Carr, M. Reagan, E.M. Stolper, Oxygen
  209. isotope constraints on the sources of Central American arc
  210. lavas. G-cubed (in press).
  211. [46] C.G. Macpherson, J.A. Gamble, D.P. Mattey, Oxygen isotope
  212. geochemistry of lavas from an oceanic to continental arc
  213. transition, Kermadec–Hikurangi margin, SW Pacific, Earth
  214. Planet. Sci. Lett. 160 (1998) 609– 621.
  215. [47] P.Z. Vroon, D. Lowry, M.J. van Bergen, A.J. Boyce, D.P.
  216. Mattey, Oxygen isotope systematics of the Banda Arc; low
  217. delta 18-O despite involvement of subducted continental material
  218. in magma genesis, Geochim. Cosmochim. Acta 65
  219. (2001) 589– 609.
  220. [48] R.P. Rapp, E.B. Watson, C.F. Miller, Partial melting of amphibolite/
  221. eclogite and the origin of Archean trondhjemites and
  222. tonalities, Precambrian Res. 51 (1991) 1 –25.
  223. [49] R.P. Rapp, E.B. Watson, Dehydration melting of metabasalt at
  224. 8–32-kbar—implications for continental growth and crust–
  225. mantle recycling, J. Petrol. 36 (1995) 891–931.
  226. [50] M.J. Defant, P. Kepezhinskas, M.J. Defant, J.F. Xu, P.
  227. Kepezhinskas, Q. Wang, Q. Zhang, L. Xiao, Adakites:
  228. some variations on a theme, Acta Petrologica Sinica 18-2
  229. (2002) 129– 142.
  230. [51] R.W. Kay, Aleutian adakites: melts of subduction-eroded
  231. mafic arc crust? Abstr. Programs Geol. Soc. Am. 35 (6)
  232. (2003) 515 (September).
  233. [52] T.K. Kyser, Stable isotope variations in the mantle, in: J.W.
  234. Valley, H.P. Taylor, J.R. O’Neil Jr. (Eds.), Stable Isotopes in
  235. High-Temperature Geological Processes, Reviews in Mineralogy,
  236. vol. 16, 1986, pp. 141– 164.
  237. [53] H. Martin, J.F. Moyen, Secular changes in tonalite–trondhjemite–
  238. granodiorite composition as markers of the progressive
  239. cooling of earth, Geology 30 (2002) 319–322.
  240. [54] S.R. Taylor, S.M. McLelland, Trondhjemites, tonalities, and
  241. granodiorites, Evolution of the Early Crust, Blackwell, Oxford,
  242. 1985, 302 pp.
  243. [55] E.M. King, J.W. Valley, D.W. Davis, Oxygen isotope evolution
  244. of volcanic rocks at the Sturgeon Lake volcanic complex,
  245. Ontario, Can. J. Earth Sci. 37 (2000) 39–50.
  246. [56] E.M. King, J.W. Valley, D.W. Davis, G.R. Edwards, Oxygen
  247. isotope ratios of Archean plutonic zircons from granite–greenstone
  248. belts of the Superior province: indicator of magmatic
  249. source, Precambrian Res. 92 (1998) 365– 387.
  250. [57] K. Muehlenbachs, Alteration of the oceanic crust and the 18O
  251. history of seawater, in: J.W. Valley, H.P. Taylor, J.R. O’Neil Jr.
  252. (Eds.), Stable Isotopes in High Temperature Geological Processes,
  253. Reviews in Mineralogy, vol. 16, 1986, pp. 425– 444.
  254. [58] R.T. Gregory, Oxygen isotope history of seawater revisited;
  255. timescales for boundary event changes in the oxygen isotope
  256. composition of seawater, in: H.P. Taylor Jr., J.R. O’Neil, I.R.
  257. Kaplan (Eds.), Stable Isotope Geochemistry; A Tribute to
  258. Samuel Epstein, Special Publication-Geochemical Society,
  259. vol. 3, 1991, pp. 65– 76.
  260. [59] R.A. Stern, G.N. Hanson, S.B. Shirey, Petrogenesis of mantlederived,
  261. LILE-enriched Archean monzodiorites and trachyandesites
  262. (sanukitoids) in southwestern Superior Province, Can.
  263. J. Earth Sci. 26 (1989) 1688–1712.
  264. [60] J.W. Valley, I.N. Bindeman, W.H. Peck, Empirical calibration
  265. of oxygen isotope fractionation in zircon, Geochim. Cosmochim.
  266. Acta 67 (2003) 3257–3266.
  267. [61] T.H. Green, A.E. Ringwood, Genesis of the calc-alkaline igneous
  268. rock suite, Contrib. Mineral. Petrol. 18 (1972) 105– 162.
  269. [62] T.H. Green, A.E. Ringwood, Origin of garnet phenocrysts in
  270. calc-alkaline rocks, Contrib. Mineral. Petrol. 18 (1968)
  271. 163– 174." name="eprints.referencetext" />
  272. <meta content="Bindeman, I.N. and Eiler, J.M. and Yogodzinski, G.M. and Tatsumi, Y. and Stern, C.R. and Grove, T.L. and Portnyagin, M.V. and Hoemle, K. and Danyushevsky, L.V. (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235 (3-4). pp. 480-496. ISSN 0012-821X" name="eprints.citation" />
  273. <meta content="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf" name="eprints.document_url" />
  274. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  275. <meta content="Oxygen isotope evidence for slab melting in modern
  276. and ancient subduction zones" name="DC.title" />
  277. <meta content="Bindeman, I.N." name="DC.creator" />
  278. <meta content="Eiler, J.M." name="DC.creator" />
  279. <meta content="Yogodzinski, G.M." name="DC.creator" />
  280. <meta content="Tatsumi, Y." name="DC.creator" />
  281. <meta content="Stern, C.R." name="DC.creator" />
  282. <meta content="Grove, T.L." name="DC.creator" />
  283. <meta content="Portnyagin, M.V." name="DC.creator" />
  284. <meta content="Hoemle, K." name="DC.creator" />
  285. <meta content="Danyushevsky, L.V." name="DC.creator" />
  286. <meta content="260100 Geology" name="DC.subject" />
  287. <meta content="We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant slab melts.
  288. Measured and calculated values of delta 18 O for olivine phenocrysts in these samples vary between 4.88 per mil and 6.78 per mil, corresponding to calculated melt values of 6.36 per mil to 8.17 per mil. Values of delta 18 O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical
  289. adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of delta 18 O slightly higher than those of normal mid-oceanridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Sirich
  290. compositions and low liquidus temperatures, not 18 O-rich sources). Other primitive adakites from Panama and Fiji show
  291. only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have delta 18 O values of ca. 9–20 per mil, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have delta 18 O values of ca. 2–5 per mil. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower- delta 18 O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme delta 18 O values, but undergoisotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in delta 18 O than equilibrium with the mantle, consistent with their containing variable amounts
  292. of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka)." name="DC.description" />
  293. <meta content="2005-07" name="DC.date" />
  294. <meta content="Article" name="DC.type" />
  295. <meta content="PeerReviewed" name="DC.type" />
  296. <meta content="application/pdf" name="DC.format" />
  297. <meta content="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf" name="DC.identifier" />
  298. <meta content="http://dx.doi.org/10.1016/j.epsl.2005.04.014" name="DC.relation" />
  299. <meta content="Bindeman, I.N. and Eiler, J.M. and Yogodzinski, G.M. and Tatsumi, Y. and Stern, C.R. and Grove, T.L. and Portnyagin, M.V. and Hoemle, K. and Danyushevsky, L.V. (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235 (3-4). pp. 480-496. ISSN 0012-821X" name="DC.identifier" />
  300. <meta content="http://eprints.utas.edu.au/2010/" name="DC.relation" />
  301. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/BibTeX/epprod-eprint-2010.bib" title="BibTeX" type="text/plain" />
  302. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/ContextObject/epprod-eprint-2010.xml" title="OpenURL ContextObject" type="text/xml" />
  303. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/ContextObject::Dissertation/epprod-eprint-2010.xml" title="OpenURL Dissertation" type="text/xml" />
  304. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/ContextObject::Journal/epprod-eprint-2010.xml" title="OpenURL Journal" type="text/xml" />
  305. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/DC/epprod-eprint-2010.txt" title="Dublin Core" type="text/plain" />
  306. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/DIDL/epprod-eprint-2010.xml" title="DIDL" type="text/xml" />
  307. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/EndNote/epprod-eprint-2010.enw" title="EndNote" type="text/plain" />
  308. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/HTML/epprod-eprint-2010.html" title="HTML Citation" type="text/html; charset=utf-8" />
  309. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/METS/epprod-eprint-2010.xml" title="METS" type="text/xml" />
  310. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/MODS/epprod-eprint-2010.xml" title="MODS" type="text/xml" />
  311. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/RIS/epprod-eprint-2010.ris" title="Reference Manager" type="text/plain" />
  312. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/Refer/epprod-eprint-2010.refer" title="Refer" type="text/plain" />
  313. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/Simple/epprod-eprint-2010text" title="Simple Metadata" type="text/plain" />
  314. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/Text/epprod-eprint-2010.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  315. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/XML/epprod-eprint-2010.xml" title="EP3 XML" type="text/xml" />
  316.  
  317. </head>
  318. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  319. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  320.  
  321.  
  322.  
  323.  
  324. <table width="795" border="0" cellspacing="0" cellpadding="0">
  325. <tr>
  326. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  327. <table border="0" cellpadding="0" cellspacing="0" width="795">
  328. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  329. <tr>
  330. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  331. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  332. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  333. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  334. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  335. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  336. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  337. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  338. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  339. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  340. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  341. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  342. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  343. </tr>
  344. <tr>
  345. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  346. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  347. </tr>
  348. <tr>
  349. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  350. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  351. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  352. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  353. </tr>
  354. <tr>
  355. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  356. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  357. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  358. </tr>
  359. <tr>
  360. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  361. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  362. </tr>
  363. <tr>
  364. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  365. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  366. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  367. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  368. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  369. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  370. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  371. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  372. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  373. </tr>
  374. <tr>
  375. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  376. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  377. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  378. </tr>
  379. <tr>
  380. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  381. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  382. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  383. </tr>
  384. </table></td>
  385. </tr>
  386. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  387. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  388. <td align="right" style="white-space: nowrap">
  389. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  390. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  391. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  392. <input type="hidden" name="_order" value="bytitle" />
  393. <input type="hidden" name="basic_srchtype" value="ALL" />
  394. <input type="hidden" name="_satisfyall" value="ALL" />
  395. </form>
  396. </td>
  397. </tr></table></td></tr>
  398. <tr>
  399. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  400.  
  401.  
  402. <div align="center">
  403. <table width="720" class="ep_tm_main"><tr><td align="left">
  404. <h1 class="ep_tm_pagetitle">Oxygen isotope evidence for slab melting in modern and ancient subduction zones</h1>
  405. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Bindeman, I.N.</span> and <span class="person_name">Eiler, J.M.</span> and <span class="person_name">Yogodzinski, G.M.</span> and <span class="person_name">Tatsumi, Y.</span> and <span class="person_name">Stern, C.R.</span> and <span class="person_name">Grove, T.L.</span> and <span class="person_name">Portnyagin, M.V.</span> and <span class="person_name">Hoemle, K.</span> and <span class="person_name">Danyushevsky, L.V.</span> (2005) <xhtml:em>Oxygen isotope evidence for slab melting in modern and ancient subduction zones.</xhtml:em> Earth and Planetary Science Letters, 235 (3-4). pp. 480-496. ISSN 0012-821X</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />264Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2569" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/j.epsl.2005.04.014">http://dx.doi.org/10.1016/j.epsl.2005.04.014</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant slab melts.&#13;
  406. Measured and calculated values of delta 18 O for olivine phenocrysts in these samples vary between 4.88 per mil and 6.78 per mil, corresponding to calculated melt values of 6.36 per mil to 8.17 per mil. Values of delta 18 O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical&#13;
  407. adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of delta 18 O slightly higher than those of normal mid-oceanridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Sirich&#13;
  408. compositions and low liquidus temperatures, not 18 O-rich sources). Other primitive adakites from Panama and Fiji show&#13;
  409. only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have delta 18 O values of ca. 9–20 per mil, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have delta 18 O values of ca. 2–5 per mil. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower- delta 18 O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme delta 18 O values, but undergoisotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in delta 18 O than equilibrium with the mantle, consistent with their containing variable amounts&#13;
  410. of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka).</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available at http://www.sciencedirect.com/</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">andesite; adakite; subduction; oxygen isotopes; setouchi; trondhjemite; zircon</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2010</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Oct 2007 15:04</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2010;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2010">item control page</a></p>
  411. </td></tr></table>
  412. </div>
  413.  
  414.  
  415.  
  416. <!-- InstanceEndEditable --></td>
  417. </tr>
  418. <tr>
  419. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  420. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  421. <tr valign="top">
  422. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  423. </tr>
  424. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  425. <tr valign="top">
  426. <td width="68%" class="footer">Authorised by the University Librarian<br />
  427. © University of Tasmania ABN 30 764 374 782<br />
  428. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  429. <td width="32%"><div align="right">
  430. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  431. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  432. </a></p>
  433. </div></td>
  434. </tr>
  435. <tr valign="top">
  436. <td><p>  </p></td>
  437. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  438. </tr>
  439. </table>
  440. <!-- #EndLibraryItem -->
  441. <div align="center"></div></td>
  442. </tr>
  443. </table>
  444.  
  445. </body>
  446. </html>