<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Oxygen isotope evidence for slab melting in modern and ancient subduction zones</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Bindeman, I.N." name="eprints.creators_name" /> <meta content="Eiler, J.M." name="eprints.creators_name" /> <meta content="Yogodzinski, G.M." name="eprints.creators_name" /> <meta content="Tatsumi, Y." name="eprints.creators_name" /> <meta content="Stern, C.R." name="eprints.creators_name" /> <meta content="Grove, T.L." name="eprints.creators_name" /> <meta content="Portnyagin, M.V." name="eprints.creators_name" /> <meta content="Hoemle, K." name="eprints.creators_name" /> <meta content="Danyushevsky, L.V." name="eprints.creators_name" /> <meta content="bindeman@uoregon.edu" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="L.Dan@utas.edu.au" name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-10-04 05:04:46" name="eprints.datestamp" /> <meta content="2008-01-08 15:30:00" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Oxygen isotope evidence for slab melting in modern and ancient subduction zones" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="260100" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="andesite; adakite; subduction; oxygen isotopes; setouchi; trondhjemite; zircon" name="eprints.keywords" /> <meta content="The definitive version is available at http://www.sciencedirect.com/" name="eprints.note" /> <meta content="We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant slab melts. Measured and calculated values of delta 18 O for olivine phenocrysts in these samples vary between 4.88 per mil and 6.78 per mil, corresponding to calculated melt values of 6.36 per mil to 8.17 per mil. Values of delta 18 O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of delta 18 O slightly higher than those of normal mid-oceanridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Sirich compositions and low liquidus temperatures, not 18 O-rich sources). Other primitive adakites from Panama and Fiji show only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have delta 18 O values of ca. 9–20 per mil, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have delta 18 O values of ca. 2–5 per mil. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower- delta 18 O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme delta 18 O values, but undergoisotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in delta 18 O than equilibrium with the mantle, consistent with their containing variable amounts of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka)." name="eprints.abstract" /> <meta content="2005-07" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Earth and Planetary Science Letters" name="eprints.publication" /> <meta content="235" name="eprints.volume" /> <meta content="3-4" name="eprints.number" /> <meta content="480-496" name="eprints.pagerange" /> <meta content="10.1016/j.epsl.2005.04.014" name="eprints.id_number" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="0012-821X" name="eprints.issn" /> <meta content="http://dx.doi.org/10.1016/j.epsl.2005.04.014" name="eprints.official_url" /> <meta content="[1]J. Gill, Orogenic Andesites and Plate Tectonics, Springer- Verlag, Berlin, 1981, 330 pp. [2] T. Elliot, Tracers of the slab. Inside the subduction factory, Geophys. Monogr. 138 (2003) 23–44. [3] H. Martin, Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas, Geology 14 (1986)753– 756. [4] R.W. Kay, Aleutian magnesian andesites: melts from subducted Pacific ocean crust, J. Volcanol. Geotherm. Res. 4 (1978) 117–132. [5] C.R. Stern, R. Kilian, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone, Contrib. Mineral. Petrol. 123 (1996) 263–281. [6] M.J. Defant, M.S. Drummond, Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature 347 (1990) 662– 665. [7] G.M. Yogodzinski, O.N. Volynets, A.V. Koloskov, N.I. Seliversov, V.V. Matvenkov, Magnesian andesites and subduction component in a strongly calc-alkaline series at Piip volcano, Far Western Aleutians, J. Petrol. 35 (1994) 163– 204. [8] T.L. Grove, S.W. Parman, S.A. Bowring, R.C. Price, M.B. Baker, The role of an H2O-rich component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California, Contrib. Mineral. Petrol. 142 (2002) 375–396. [9] E. Bourdon, J.P. Eissen, M.A. Gutscher, M. Monzier, M.L. Hall, J. Cotton, Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case South America, Earth Planet. Sci. Lett. 205 (2003) 123– 138. [10] G. Shimoda, Y. Tatsumi, S. Nohda, K. Ishizaka, B.M. Jahn, Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducted sediments, Earth Planet. Sci. Lett. 160 (1998) 479–492. [11] T. Hanyu, Y. Tatsumi, S. Nakai, A contribution of slab-melts to the formation of high-Mg andesite magmas; Hf isotopic evidence from SW Japan. Geophys. Res. Lett. 29 (2002) 22, 2051. [12] Y. Tatsumi, T. Hanyu, Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan, G-cubed 4 (2003) (art. no. 1081). [13] K.Y. Tomlinson, D.W. Davis, J.A. Percival, D.J. Hughes, P.C. Thurston, Mafic to felsic magmatism and crustal recycling in the Obonga Lake greenstone belt, western Superior Province: evidence from geochemistry, Nd isotopes and U–Pb geochronology, Precambrian Res. 114 (2002) 295– 325. [14] S.M. Kay, V.A. Ramos, M. Marquez, Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge–trench collision in southern South America, J. Geol. 101 (1993) 703– 714. [15] G.M. Yogodzinski, J.M. Lees, T.G. Churikova, F. Dorendorf, G. Wo¨ rner, O.N. Volynets, Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges, Nature 409 (2001) 500– 504. [16] M. Abratis, G. Wo¨ rner, Ridge collision, slab-window formation, and the flux of Pacific asthenosphe re into the Caribbean realm, Geology 29 (2001) 127–130. [17] E. Bourdon, J.P. Eissen, M. Monzier, C. Robin, H. Martin, J. Cotten, M.L. Hall, Adakite-like lavas from Antisana volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean Northern volcanic zone, J. Petrol. 43 (2002) 199–217. [18] D. Mattey, D. Lowry, C. Macpherson, Oxygen isotope composition of mantle peridotite, Earth Planet. Sci. Lett. 128 (1994) 231–241. [19] M. Eiler, Oxygen isotope variations of basaltic lavas and upper mantle rocks, in: J.W. Valley, D.R. Cole (Eds.), Stable Isotope Geochemistry, Reviews in Mineralogy and Geochemistry, vol. 43, 2001, pp. 319– 364. [20] Y. Kolodny, S. Epstein, Stable isotope geochemistry of deep sea cherts, Geochim. Cosmochim. Acta 40 (1976) 1195– 1209. [21] R.T. Gregory, H.P. Taylor, An oxygen isotope profile in a section of the Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for y18O buffering of the oceans by deep (N5 km) seawater–hydrothermal circulation at mid-ocean ridges, J. Geophys. Res. 86 (1981) 2737– 2755. [22] J.C. Alt, K. Muehlenbachs, J. Honnorez, An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504B, Earth Planet. Sci. Lett. 80 (1986) 217– 229. [23] H. Staudigel, G.R. Davies, S.R. Hart, K.M. Marchant, B.M. Smith, Large-scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust—DSDP/ODP sites 417/418, Earth Planet. Sci. Lett. 130 (1995) 169– 185. [24] M. Magaritz, H.P. Taylor, Oxygen and hydrogen isotope studies of serpentinization in Troodos Ophiolite complex, Cyprus, Earth Planet. Sci. Lett. 23 (1974) 8 –14. [25] J.D. Cocker, B.J. Griffin, K. Muehlenbachs, Oxygen and carbon isotope evidence for sea-water–hydrothermal alteration of the Macquarie Island ophiolite, Earth Planet. Sci. Lett. 61 (1982) 112–122. [26] D.P. Schrag, D.J. DePaolo, F.M. Richter, Oxygen isotope exchange in a 2-layer model of oceanic-crust, Earth Planet. Sci. Lett. 111 (1992) 305– 317. [27] J.M. Eiler, A. Crawford, T. Elliott, K.A. Farley, J.W. Valley, E.M. Stolper, Oxygen isotope geochemistry of oceanic-arc lavas, J. Petrol. 41 (2000) 229–256. [28] Z.D. Sharp, A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides, Geochim. Cosmochim. Acta 54 (1990) 1353– 1357. [29] J.W. Valley, N. Kitchen, M.J. Kohn, C.R. Niendorf, M.J. Spicuzza, UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating, Geochim. Cosmochim. Acta. 59 (1995) 5223– 5231. [30] H. Chiba, T. Chacko, R.N. Clayton, J.R. Goldsmith, Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite; application to geothermometry, Geochim. Cosmochim. Acta 53 (1989) 2985–2995. [31] Z.F. Zhao, Y.F. Zheng, Calculation of oxygen isotope fractionation in magmatic rocks, Chem. Geol. 193 (2003) 59– 80. [32] I.N. Bindeman, V.V. Ponomareva, J.C. Bailey, J.W. Valley, Volcanic arc of Kamchatka: a province with high-y18O magma sources and large scale 18O/16O depletion of the upper crust, Geochim. Cosmochim. Acta 68 (2004) 841– 865. [33] K.M. Cooper, J.M. Eiler, P.D. Asimow, C.H. Langmuir, Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge, Earth Planet. Sci. Lett. 220 (2004) 297– 316. [34] C.G. Macpherson, D.R. Hilton, D.P. Mattey, J.M. Sinton, Evidence for an O-18-depleted mantle plume from contrasting O-18/O-16 ratios of back-arc lavas from the Manus Basin and Mariana Trough, Earth Planet. Sci. Lett. 176 (2000) 171– 183. [35] O. Sigmarsson, H. Martin, J. Knowles, Melting of a subducting oceanic crust from U–Th disequilibria in Austral Andean lavas, Nature 394 (1998) 566– 569. [36] O. Sigmarsson, J. Chmeleff, J. Morris, L. Lopez-Escobar, Origin of Ra-226–Th-230 disequilibria in arc lavas from southern Chile and implications for magma transfer time, Earth Planet. Sci. Lett. 196 (2002) 189– 196. [37] K. Hoernle, P. Bogaard, R. Werner, B. Lissinna, F. Hauff, G. Alvarado, G. Garbe-Schonberg, Missing history (16–71 Ma) of the Galapagos hotspot: implications for the tectonic and biological evolution of the Americas, Geology 30 (2002) 795–798. [38] O.N. Volynets, A.D. Babanskii, Y.V. Gol’tsman, Variations in isotopic and trace elemental composition of lavas from volcanoes of the Northern group, Kamchatka, in relation to specific features of subduction, Geochem. Int. 38 (2000) 974– 989. [39] R.P. Rapp, N. Shimizu, M.D. Norman, G.S. Applegate, Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa, Chem. Geol. 160 (1999) 335– 356. [40] G.M. Yogodzinski, P.B. Kelemen, Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt, Earth Planet. Sci. Lett. 158 (1998) 53– 63. [41] L.E. Borg, M.A. Clynne, T.D. Bullen, The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California, Can. Mineral. 35 (1997) 425– 452. [42] C.R. Bacon, P.E. Bruggman, R.L. Christiansen, M.A. Clynne, J.M. Donnelly-Nolan, W. Hildreth, Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneous subarc mantle, Can. Mineral. 35 (1997) 397– 423. [43] W.P. Leeman, D.R. Smith, W. Hildreth, Z. Palacz, N. Roger, Compositional diversity of late Cenozoic basalts in a transect across the Southern Washington Cascades—implications for subduction zone magmatism, J. Geophys. Res.-Solid 95 (1990) 19561– 19582. [44] J. Chmeleff, O. Sigmarsson, The role of fluids in an adakitic volcano: constraints from U-series in lavas of Pichincha, Ecuador. Abstracts of 2004 Goldschmidt conference, A601. [45] J.M. Eiler, M.J. Carr, M. Reagan, E.M. Stolper, Oxygen isotope constraints on the sources of Central American arc lavas. G-cubed (in press). [46] C.G. Macpherson, J.A. Gamble, D.P. Mattey, Oxygen isotope geochemistry of lavas from an oceanic to continental arc transition, Kermadec–Hikurangi margin, SW Pacific, Earth Planet. Sci. Lett. 160 (1998) 609– 621. [47] P.Z. Vroon, D. Lowry, M.J. van Bergen, A.J. Boyce, D.P. Mattey, Oxygen isotope systematics of the Banda Arc; low delta 18-O despite involvement of subducted continental material in magma genesis, Geochim. Cosmochim. Acta 65 (2001) 589– 609. [48] R.P. Rapp, E.B. Watson, C.F. Miller, Partial melting of amphibolite/ eclogite and the origin of Archean trondhjemites and tonalities, Precambrian Res. 51 (1991) 1 –25. [49] R.P. Rapp, E.B. Watson, Dehydration melting of metabasalt at 8–32-kbar—implications for continental growth and crust– mantle recycling, J. Petrol. 36 (1995) 891–931. [50] M.J. Defant, P. Kepezhinskas, M.J. Defant, J.F. Xu, P. Kepezhinskas, Q. Wang, Q. Zhang, L. Xiao, Adakites: some variations on a theme, Acta Petrologica Sinica 18-2 (2002) 129– 142. [51] R.W. Kay, Aleutian adakites: melts of subduction-eroded mafic arc crust? Abstr. Programs Geol. Soc. Am. 35 (6) (2003) 515 (September). [52] T.K. Kyser, Stable isotope variations in the mantle, in: J.W. Valley, H.P. Taylor, J.R. O’Neil Jr. (Eds.), Stable Isotopes in High-Temperature Geological Processes, Reviews in Mineralogy, vol. 16, 1986, pp. 141– 164. [53] H. Martin, J.F. Moyen, Secular changes in tonalite–trondhjemite– granodiorite composition as markers of the progressive cooling of earth, Geology 30 (2002) 319–322. [54] S.R. Taylor, S.M. McLelland, Trondhjemites, tonalities, and granodiorites, Evolution of the Early Crust, Blackwell, Oxford, 1985, 302 pp. [55] E.M. King, J.W. Valley, D.W. Davis, Oxygen isotope evolution of volcanic rocks at the Sturgeon Lake volcanic complex, Ontario, Can. J. Earth Sci. 37 (2000) 39–50. [56] E.M. King, J.W. Valley, D.W. Davis, G.R. Edwards, Oxygen isotope ratios of Archean plutonic zircons from granite–greenstone belts of the Superior province: indicator of magmatic source, Precambrian Res. 92 (1998) 365– 387. [57] K. Muehlenbachs, Alteration of the oceanic crust and the 18O history of seawater, in: J.W. Valley, H.P. Taylor, J.R. O’Neil Jr. (Eds.), Stable Isotopes in High Temperature Geological Processes, Reviews in Mineralogy, vol. 16, 1986, pp. 425– 444. [58] R.T. Gregory, Oxygen isotope history of seawater revisited; timescales for boundary event changes in the oxygen isotope composition of seawater, in: H.P. Taylor Jr., J.R. O’Neil, I.R. Kaplan (Eds.), Stable Isotope Geochemistry; A Tribute to Samuel Epstein, Special Publication-Geochemical Society, vol. 3, 1991, pp. 65– 76. [59] R.A. Stern, G.N. Hanson, S.B. Shirey, Petrogenesis of mantlederived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province, Can. J. Earth Sci. 26 (1989) 1688–1712. [60] J.W. Valley, I.N. Bindeman, W.H. Peck, Empirical calibration of oxygen isotope fractionation in zircon, Geochim. Cosmochim. Acta 67 (2003) 3257–3266. [61] T.H. Green, A.E. Ringwood, Genesis of the calc-alkaline igneous rock suite, Contrib. Mineral. Petrol. 18 (1972) 105– 162. [62] T.H. Green, A.E. Ringwood, Origin of garnet phenocrysts in calc-alkaline rocks, Contrib. Mineral. Petrol. 18 (1968) 163– 174." name="eprints.referencetext" /> <meta content="Bindeman, I.N. and Eiler, J.M. and Yogodzinski, G.M. and Tatsumi, Y. and Stern, C.R. and Grove, T.L. and Portnyagin, M.V. and Hoemle, K. and Danyushevsky, L.V. (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235 (3-4). pp. 480-496. ISSN 0012-821X" name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Oxygen isotope evidence for slab melting in modern and ancient subduction zones" name="DC.title" /> <meta content="Bindeman, I.N." name="DC.creator" /> <meta content="Eiler, J.M." name="DC.creator" /> <meta content="Yogodzinski, G.M." name="DC.creator" /> <meta content="Tatsumi, Y." name="DC.creator" /> <meta content="Stern, C.R." name="DC.creator" /> <meta content="Grove, T.L." name="DC.creator" /> <meta content="Portnyagin, M.V." name="DC.creator" /> <meta content="Hoemle, K." name="DC.creator" /> <meta content="Danyushevsky, L.V." name="DC.creator" /> <meta content="260100 Geology" name="DC.subject" /> <meta content="We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant slab melts. Measured and calculated values of delta 18 O for olivine phenocrysts in these samples vary between 4.88 per mil and 6.78 per mil, corresponding to calculated melt values of 6.36 per mil to 8.17 per mil. Values of delta 18 O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of delta 18 O slightly higher than those of normal mid-oceanridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Sirich compositions and low liquidus temperatures, not 18 O-rich sources). Other primitive adakites from Panama and Fiji show only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have delta 18 O values of ca. 9–20 per mil, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have delta 18 O values of ca. 2–5 per mil. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower- delta 18 O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme delta 18 O values, but undergoisotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in delta 18 O than equilibrium with the mantle, consistent with their containing variable amounts of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka)." name="DC.description" /> <meta content="2005-07" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/10.1016/j.epsl.2005.04.014" name="DC.relation" /> <meta content="Bindeman, I.N. and Eiler, J.M. and Yogodzinski, G.M. and Tatsumi, Y. and Stern, C.R. and Grove, T.L. and Portnyagin, M.V. and Hoemle, K. and Danyushevsky, L.V. (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235 (3-4). pp. 480-496. ISSN 0012-821X" name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/2010/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/BibTeX/epprod-eprint-2010.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/ContextObject/epprod-eprint-2010.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/ContextObject::Dissertation/epprod-eprint-2010.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/ContextObject::Journal/epprod-eprint-2010.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/DC/epprod-eprint-2010.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/DIDL/epprod-eprint-2010.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/EndNote/epprod-eprint-2010.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/HTML/epprod-eprint-2010.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/METS/epprod-eprint-2010.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/MODS/epprod-eprint-2010.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/RIS/epprod-eprint-2010.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/Refer/epprod-eprint-2010.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/Simple/epprod-eprint-2010text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/Text/epprod-eprint-2010.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2010/XML/epprod-eprint-2010.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Oxygen isotope evidence for slab melting in modern and ancient subduction zones</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Bindeman, I.N.</span> and <span class="person_name">Eiler, J.M.</span> and <span class="person_name">Yogodzinski, G.M.</span> and <span class="person_name">Tatsumi, Y.</span> and <span class="person_name">Stern, C.R.</span> and <span class="person_name">Grove, T.L.</span> and <span class="person_name">Portnyagin, M.V.</span> and <span class="person_name">Hoemle, K.</span> and <span class="person_name">Danyushevsky, L.V.</span> (2005) <xhtml:em>Oxygen isotope evidence for slab melting in modern and ancient subduction zones.</xhtml:em> Earth and Planetary Science Letters, 235 (3-4). pp. 480-496. ISSN 0012-821X</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2010/2/Bindeman-Eiler-et-al-EPSL2005.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />264Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2569" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/j.epsl.2005.04.014">http://dx.doi.org/10.1016/j.epsl.2005.04.014</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant slab melts. Measured and calculated values of delta 18 O for olivine phenocrysts in these samples vary between 4.88 per mil and 6.78 per mil, corresponding to calculated melt values of 6.36 per mil to 8.17 per mil. Values of delta 18 O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of delta 18 O slightly higher than those of normal mid-oceanridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Sirich compositions and low liquidus temperatures, not 18 O-rich sources). Other primitive adakites from Panama and Fiji show only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have delta 18 O values of ca. 9–20 per mil, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have delta 18 O values of ca. 2–5 per mil. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower- delta 18 O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme delta 18 O values, but undergoisotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in delta 18 O than equilibrium with the mantle, consistent with their containing variable amounts of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka).</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available at http://www.sciencedirect.com/</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">andesite; adakite; subduction; oxygen isotopes; setouchi; trondhjemite; zircon</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2010</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Oct 2007 15:04</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2010;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=2010">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>